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A stochastic process driven by the quadratic Ornstein- 
Uhlenbeck noise: generator, propagators and all that 
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Department of Theoretical Physics, Silesian University, 40-007 Katowice, Poland 

Received 13 January 1988 

Abstract. A non-Markovian stochastic process modelled by a linear first-order differential 
equation involving quadratic Ornstein-Uhlenbeck noise is investigated. The generator of 
an evolution operator of the process is constructed and linear propagators of a one- 
dimensional probability distribution are built. The initial correlation functions are pre- 
sented and evolution equations for the moments of the process are derived. Some 
approximative methods are verified. 

1. Introduction 

Evolution equations with random parameters describe a great variety of physical [ 11, 
chemical [2] and biological [3] systems. In many cases, they are ordinary differential 
equations and, in general, these equations are the result of a reduction of more 
fundamental equations describing the microscopic level of the system. If characteristics 
of random parameters are known then the evolution of the system is described by 
stochastic equations of the form 

= f ( ~ r ,  Yr) (1.1) 
with random parameters modelled by the stochastic process yr. In the general case, 
random parameters enter non-linearly and multiplicatively in the deterministic 
equation. This situation is referred to as non-linear noise. Equation (1.1) defines a 
stochastic process x, and the main properties of this process can be described by a 
single-event probability distribution p ( x ,  t ) .  One of the fundamental problems for 
analysis of (1.1) is to construct an infinitesimal generator of the evolution operator of 
the stochastic process x,. This would allow us, for example, to find an evolution 
equation of the probability distribution p ( x ,  t )  of the process x,. Unfortunately, this 
problem is seldom amenable to exact analytic solution so there are many approximation 
procedures which have been proposed [4-61. Therefore, it is worthwhile studying the 
stochastic equations for which this problem can be exactly solved. 

In this paper, we study a simple equation 

i f  =f(y,)x, (1.2) 
where f is a quadratic function of the noise y,. 

There are several reasons for studying (1.2). Firstly, this equation describes many 
physical phenomena (see [7, 81 and references therein). For example, the relaxation 
equation 

X, = -E 'X ,  (1.3) 
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under the assumption that the parameter E may fluctuate: 

E = E,+y, ( 1.4) 

where E,, is a constant, also belongs to the class of equations given by (1.2). Secondly, 
equation (1.2) can be exactly solved in the sense that whole one-dimensional dynamics 
(a generator, propagators, p ( x ,  t ) )  are given in analytical form. 

Because of the non-linearity in y,, the noise cannot be treated as white noise. Here 
we assume that y ,  is coloured noise modelled by an Ornstein-Uhlenbeck stochastic 
process [9]. Recently [lo], we have studied a linear differential equation with an 
additive quadratic noise. It is worthwhile comparing these two models. 

The linear differential equations with multiplicative noise as (1.2) have been studied 
in the literature. San Miguel and Sancho [ 6 ]  derived an approximative evolution 
equation for p ( x ,  t ) .  The exact mean value of x, was obtained in [7,8]. W6dkiewicz 
[ 113 derived the exact evolution equation for p ( x ,  t ) .  His equation is a partial integro- 
differential equation with retardation (memory). The kernel of the integral part of this 
equation is the inverse Laplace transform of the operator-continued fraction. The 
theory of such a type of equation was not elaborated. Therefore it is difficult to analyse 
such equations. In this paper we present a more convenient evolution equation for 

In 9 2 we formulate the problem of interest. It is desirable to transform the starting 
process x, into another process z,. In § 3 we derive an exact evolution equation for 
the probability distribution P ( z ,  t )  of the transformed process z , .  This equation is 
obtained directly from the Fokker-Planck equation for the joint probability density 
of a two-dimensional diffusion process ( z , ,  y , ) .  By solving the suitable Martin-Siggia- 
Rose equations [12], we are able to eliminate the noise variable from the Fokker-Planck 
equation. It is a non-trivial example of obtaining the reduced equation for the ‘slow’ 
variable z by using the procedure of elimination of the ‘fast’ variable y applied to 
partial differential equations [13]. In § 4 we present a master-type equation for the 
density p ( x ,  t )  of the starting process x,. In 9 5 we construct the infinitesimal generator 
of the evolution operator for x,. This generator has the form of the Kramers-Moyal 
operator [14] with explicitly defined coefficients. In § 6 we solve the master-type 
equation to obtain p ( x ,  t )  and we construct propagators. In 9 7 we present the initial 
correlation functions which in special cases correspond to the mean value and fluctu- 
ations of the process x,. The evolution equations for the moments of x, are also 
contained in § 7.  In § 8 we discuss some approximative methods considered in the 
literature. 

P(X, t ) .  

2. Formulation of the problem 

The equation we are considering is [6-81 

X, = - ( A  + By, + C~:)X, X E R +  (2.1) 

where A, B and C are fixed constants. The coloured noise y ,  is assumed to be the 
Ornstein-Uhlenbeck process [9] of mean value zero and correlation 

with y and a fixed positive constants. 
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This process is generated by the stochastic differential 

dy ,=-ay ,  d t+(2y)’ ’*dW,  Y C R  (2.3) 

under the assumption 

(Yo) = 0 ( Y 3  = Y / f f .  (2.4) 

Here, ( ) denotes the expectation value of the process and W, is the standard Wiener 
process. 

The probability density Po(y, t )  of y ,  has the Gaussian form 

Po(y, t )  = P0(y) = ( ~ / 2 . ? r y ) ” ~  exp(-ay2/2y).  (2.5) 

We assume that the initial probability distribution p ( x ,  0) of x ,  in (2.1) is given by 

P(X,  0) = P ( X )  (2.6) 
and xo is statistically independent of the noise y,. If, e.g., in (2.1) xo is fixed, xo = c, then 

p ( x )  = S ( x  - c ) .  (2.7) 
If the problem (2.1) is solved then the corresponding problem with x ER-  can be easily 
solved by noting that (2.1) is invariant with respect to the change of sign of x.  The 
normalisation condition for p ( x ,  t )  has the form 

!oT p ( x ,  t )  dx = 1. 

Let us introduce a new variable 

z = In x.  (2.9) 

Z , = - ( A + B y , + C y ; )  Z € R  (2.10) 

(2.8) 

Then (2.1) takes the form 

and the initial distribution P ( z ,  0) of z, is given by 

P ( z ,  0 )  = e’p(e‘). (2.11) 

The distribution p ( x ,  t )  can be obtained from P ( z ,  t )  of z, in (2.10) via the relation 

1 
p ( x ,  t )  = - P ( z  = In x ,  f ) .  (2.12) 

First, we find an evolution equation for P ( z ,  t )  and then we transform it to obtain an 
equation for p ( x ,  t ) .  

X 

3. Master-type equation for P(z ,  t )  

Let us notice that the two-dimensional stochastic process ( z , , y , )  is a degenerate 
diffusion process and the joint probability density p ( z ,  y ,  t )  obeys the Fokker-Planck 
equation 

(3.1) a d z ,  Y ,  f ) / a  = JNZ, Y ,  0 
where the Fokker-Planck generator L has the form 

a a  a‘ 
az ay ay- 

L =  ( A +  BY + Cy’) -+ CY-  y +  (3.2) 
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and the Cauchy boundary condition for (3.1) has the form 

P(Z, y, 0) = P o ( y ) P ( z ,  0). 

P(Z, Y ,  t )  = e L ' d z ,  Y ,  0) 

The formal solution of (3.1) is 

and the probability distribution P ( z ,  1) can be obtained from 
-r 

P(z, t )  = 1 dy eL'Po(y)P(z, 0) = U ( t ) P ( z ,  0) 
--r 

where the evolution operator U ( t )  of the process z, has the form 

(3.3) 

(3.4) 

(3.5) 

For notational convenience we have dropped the dependence of U( t )  on the differential 
operator a/&. The infinitesimal generator l ( t )  of z, is determined by the relation 

i r ( t ) = l ( t ) U ( t )  (3.7a) 

or by the equation 

-- aP(z9 t ,  - I (  t )P (Z ,  1 )  
a t  

(3.76) 

In the case considered, the generator I (  t )  can be explicitly evaluated. Let us notice that 
r 

o( t )  = dy L eL'Po(y) 
--r 

22 

= 1 dy(A + By + Cy')  eL'Po(y) 
az -= 

a a a 
az az az  

= A -  U ( t ) + B -  V ( t ) + C -  W ( t )  

where 

(3.9) 
J - X  J - x  

and 
m 5 

W f ) =  dyy' eL'po(y) = I-, dyy eL'y(t)Po(y) (3.10) I-, 
where 

y (  t )  = e-L'y eLt. (3.11) 

Now, we will express the operators V ( t )  and W ( t )  in terms of U ( ? ) .  The procedure 
is similar to that used in [lo]. 
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3.1. Martin-Siggia-Rose equations 

To find the time dependence of y( t )  given by (3.11), we should solve suitable Martin- 
Siggia-Rose equations [ 121: 

i ( t ) =  - [L ,y ( t ) l=  -ay(r)-2yy*(t) ( 3 . 1 2 ~ )  

y*( t )  = -[ L, y^( t ) ]  = ay^( t )  + Bi( t )  + 2C2( t)y( t )  (3.12b) 

z^( t )  = - [ L ,  i ( t ) ]  = 0 ( 3 . 1 2 ~ )  

with the initial conditions 

y(O)=y 3(0) = y* i(0) = i (3.13) 

and for notational convenience we have introduced 

a y ^ = -  Z =-. 
ay az 

(3.14) 

The time dependence of j ( t )  and 2 ( t )  are given by similar equations to (3.11). From 
( 3 . 1 2 ~ )  it follows that 

i ( t ) = i  (3.15) 
and 

[ a t ) ,  y ( t ) l =  [ i ( t ) ,  j ( t ) l =  0. (3.16) 

The system of equations (3.12) can be solved by the standard method. The solution 
of (3.12) has the form 

( 3 . 1 7 ~ )  

(3.17b) 
Y(t) = f 1 ( t ,  a y  + f 2 ( t ,  i)y^+h(t, 2) 
y^( t )  = h,( t ,  2)y* + h2( t ,  i ) y  + h3( t, 2) 

where 

and 

sinh w (2) I 
hl( t, z^) = cosh w (2) t + LY 4;) 

sinh w (2) t 
h2( t ,  2) = 2 C i  

4 2 )  
cosh w ( 2 ) t  - 1 sinh w ( 2 ) t  + 

w ( 2 )  

( 3 . 1 8 ~ )  

(3.18b) 

( 3 . 1 8 ~ )  

( 3 . 1 9 ~  

(3.19b 

( 3 . 1 9 ~ )  

and the 'frequency' w is defined by the formula 

d ( 2 )  = a2 - 4 y c i .  (3.20) 
The operator-valued functions in (3.18) and (3.19) are defined by the power series of 
the appropriate elementary functions. 
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3.2. Relation between V ( t )  and U ( t )  

Inserting ( 3 . 1 7 ~ )  into ( 3 . 9 )  and using the relation (cf ( 2 . 5 ) )  

Yy*PO(Y) = - f f y p o ( y )  

we can rewrite equation ( 3 . 9 )  as follows 
X 

v(t)=f3(f, ;)u(t)+h,(t,;) I dyy(- t )  eL'po(y) 
-X  

or in the form 
X 

Y 
ff -cc 

V ( t ) = f 3 ( t ,  ; ) U ( t ) - - h , ( t ,  ;) 1 dyy*(-t)eL'S,(y). 

( 3 . 2 1 )  

( 3 . 2 2 ~ )  

( 3 . 2 2 b )  

By using once more the solution (3 .17)  for y ( - t ) ,  y*( - t )  and equations (3 .22) ,  we 
obtain the relation between V (  t )  and U (  t ) :  

a t ,  ; ) V ( t ) =  Yh,( t ,  ;)u(t) (3 .23)  

where 

( 3 . 2 4 )  

To obtain (3 .23) ,  one should use the same arguments as in appendix C in [lo]. 

3.3. Relation between W (  t )  and U (  t )  

Applying the same techniques as in 0 3.2, we are able to show that from (3 .10)  it 
follows that 

Q ( t , ; ) W ( t ) =  y h , ( t ,  ; ) U ( t ) + y h , ( t , i ) V ( t ) .  ( 3 . 2 5 )  

Applying the operator Q( t, 2) on both sides of equation ( 3 . 2 5 ) ,  and using ( 3 . 2 3 ) ,  we get 

(3 .26)  

Now, the problem is to find the inverse of Q( t, ;) and Q2( t, Z) which are differential 
operators of infinite order. 

Q 2 ( t ,  ; ) w ( t ) = [ y ~ ( t ,  i ) h , ( t ,  i ) + r 2 h : ( t ,  ; ) ] ~ ( i ) .  

3.4. Inverse operators 

The operators U ( t ) ,  V ( t ) ,  W ( t ;  and Q ( t ,  2) act in  the proper space of distributions. 
Let g be any element of this space. If we denote 

( 3 . 2 7 a )  

( 3 . 2 7 b )  

Q(t ,  z*)g,(z ,  t )  = g2(z ,  t ) .  ( 3 . 2 8 )  

This is an ordinary differential equation of infinite order. There is a rich bibliography 
on such equations and the reader is referred to the paper by Leontiev [15].  We treat 
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(3 .28)  in the same way as equations of finite order. Using the Fourier transformation 
method, from ( 3 . 2 8 ) ,  we find 

where 

Using now (3 .27)  and the properties of the Fourie 
rcc 

ransforms, we 

V ( t ) g ( z ) =  J dz '  G , ( z -z ' ,  t )U( t )g (z ' )  
-E 

where 
cc 

G,(z, t )  =L 27r 1 --cc d k  e-'&'&,(k, t )  n = 1 , 2  

with 

h,( t,  -ik) 
Q( t ,  -ik)'  6 ( k ,  t )  = Y 

In the same way, from ( 3 . 2 6 ) ,  we obtain 
T 

W ) g W  = dz'  G2(z - z' ,  t )  U W d z ' )  

and  the Fourier transform &2(k, t )  in (3 .32)  has the form 

3.5. Evolution equation 

From equation ( 3 . 5 )  it follows that 

-- ') - i r ( t )P(z ,  0). 
a t  

b ain 

( 3 . 2 9 )  

(3 .30)  

(3 .31)  

(3 .32)  

(3 .33)  

(3 .34)  

( 3 . 3 5 )  

(3 .36)  

Using equations (3.8), (3 .31)  and (3 .34)  we obtain the desired equation for the time 
evolution of P(z, t ) .  It has the form 

d z ' G ( z - z ' ,  t )P(z ' ,  t )  
at  

where 

G(z, t )  = BG,(z, t ) +  CG2(z, t ) .  

( 3 . 3 7 )  

( 3 . 3 8 )  
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4. Master-type equation for p ( x ,  t )  

We can use the transformation (2.9) and the relation (2.12) to convert (3.37) into an 
evolution equation for the probability distribution p ( x ,  t )  of the starting process x , .  It 
takes the form 

-- ~ P ( x ,  t )  a 
a t  ax 

- A - [ x p ( x ,  

This equation can be recast in the master-type equation [16] 

(4.1) 

where 

and e ( x )  denotes the Heaviside function. Equation (4.2) is the first important result 
of this paper. We call it a master-type equation since (4.2) has a similar structure to 
the master equation for a one-dimensional probability distribution (or a conditional 
distribution) of Markovian processes [ 161. The equation derived by W6dkiewicz [ 113 
is an integro-differential equation of the time-convolution type (an equation with 
memory) whereas our equation (4.2) is time convolutionless. 

5. Generator of the process x, 

The generator of the time translation of the process x ,  in (2.1) is determined by equation 
(4.2). In this section we derive another form of this generator. To do this, it is useful 
to rewrite (3.37) in the form 

a t  

where we have utilised the property of commutativity of convolution in (3.37) and 
introduced the shift operator 

T , . P ( z ,  t )  = P ( z  - z' ,  t )  = exp -z'  - P ( z ,  t ) .  ( a 3  
By use of the transformation (2.9) and the relation (2.12), from (5.1) we obtain another 
form of the evolution equation for p ( x ,  t ) ,  namely 

~ P ( x ,  1) a 
a t  ax 

~- - A -  [ x p ( x ,  

Using the operator identity (see the appendix) 

(5.3) 

(5.4) 

we can write equation (5.3) in the form 
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where the generator 2 ( t )  of x, is the Kramers-Moyal operator [14] 

where 

M,(x, t ) =  -n[A6,,,+Kn(t)]x" 

and 
X 

K , ( t ) =  dzez(e ' - l )"- 'G(z,  t )  I, 
(5.7) 

By virtue of equations (3.19), (3.24), (3.33), (3.35) and (3.38) all functions &-i(m + l ) ,  
t )  are explicitly determined (in (3.20), one should put u2(-( m + 1)) = a 2 + 4 ( m  + 1 )  y C ) .  

6. Propagators of the process x, 

The solution of the Kramers-Moyal equation (5.6) or the master-type equation (4.2) 
can be written in terms of propagators n(x, tlx', 0) as follows: 

with a given initial distribution density p(x, 0). To construct the propagators, we first 
solve (3.37). This equation can be solved by the Fourier transformation method. From 
(3.37) it follows that the characteristic function 

oc 

C'(k ,  t )  = dz eikzP(z, t )  (6.2) Lx 
of the transformed process z, obeys the following equation: 

dC'(k, t )  
=-ik[A+G(k,  t)]C'(k, t )  

a t  
(6.3) 

with the initial condition C'(k ,  0) which follows from (6.2). The solution of equation 
(6.3) has the form 

C'(k ,  t )  = CZ(k,  O)f(k, t )  (6.4) 

f ( k ,  t)=exp(-ikAt-ik jOr & ( k , s ) d s ) .  

The integral in (6.5) can be evaluated [17] and we obtain 

sinh a n t  
R 2 +  1 

2fl 
cosh ant+- 

&t-ikAt-- 

R sinh a R  t + cosh a fl t - 1 
Xexp(%2!2coshaRr+(f12+l )s inhaRt  
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where 

n = a( k )  = (1 + 4iyCk/ a’)’’’. (6.7) 

Performing the inverse Fourier transform of (6.2) and utilising (6.4) we can write 

dz’ E( z - z ’ ,  t ) P (  z’ ,  0) 

where 
X 

F(z, t )  =’ 1 dk e-lkz%(k, t ) .  (6.9) 27r -a 

The solution of equation (5.5) can be obtained from (6.8) and has the form (6.1) with 
the propagator 

(6.10) 

One can construct the propagator II(x, fix’, s) for arbitrary times t and s ( t  3 s 2 0). 
It is determined by the equation 

p(x, t )  = dx’II(x, t /X’ ,  s ) ~ ( x ’ ,  s).  (6.11) 

Taking into account (6.1), from (6.11) we obtain the integral equation for unknown 
n(x, tlx‘, s )  of the form 

I: 

The solution 

J dx’ n(x,  tlx’, s)II(x’, SIX”, 0) = n(x,  tlx”, 0). 
0 

of this equation has the form 

1 %(k t )  
II(x,  fix’, s )  =- I dk- exp( -ik In <). 

27rx -x E(k,s) X 

(6.12) 

(6.13) 

From the construction of our propagators it follows that they obey the semigroup 
property 

II(x, fix’, s)  = dx”II(x,  tlx”, u)II(x”, u/x’,  s) t 5 U 2 s 5 0 .  (6.14) 

Equation (6.14) is similar to the Chapman-Kolmogorov equation for the conditional 
probability function of Markovian processes. At this stage we should stress that we 
cannot decide whether the propagators (6.13) have the significance of a conditional 
probability of the process x, in (2.1). Only II(x, tlx’, 0) coincides with the conditional 
probability because the system has no memory for previous times t C O .  This is a 
consequence of the fact that from the evolution equation like (5.5) for a single-event 
probability density p(x, t )  one cannot deduce whether the process is Markovian or not 
Markovian (for details, see [ 181). 

Equation (4.2) is a differential form of (6.11). If (6.1 1 )  holds then the time derivative 
of p(x, t )  can always be presented in the form (4.2). The propagators (evolution 
operators) II fulfil the same equation as (4.2), namely 

16 

dx” W,(x/x“)II(x“, tlx‘, s). 
a t  

(6.15) 
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If we present W,(xlx') in the form (cf (4.3)) 

w,(x~x' )  = w,(xlx')e(x') (6.16) 

then W,(xlx') is defined by 

w, (x~x ' )  = Iim E - ' [ ~ ( x ,  t +  EIx', t )  - 6(x -x')].  (6.17) 
E - 0  

It is in fact the definition of the generator of the evolution operator II. Now, it can 
be easily shown that from (6.14), (6.16) and (6.17) it follows that (6.15) is fulfilled. 

7. Main characteristics of the process x, 

For any state functions F,(x) and F2(x) one can determine the initial correlation 
function [ 181 

X X 

(F,(X,)FdXO)) = I, dx, I, dx, F,(x, )FAx,)~(x, ,  tlX2,O)P(XZ, 0). (7.1) 

For the special case when F,(x) = X"  and F2(x) = xm (n, m are any natural numbers), 
from (7.1) we obtain 

(7.2) C,,(t, 0) = (x:xr) = f(-in, t)(x:+m). 

clo(t, 0) = (x,) = f(-i, t)(xo) 

(x:) -(x,)' = i(-2i, t)(x$ -f2(-i,  t)(xo)2 

CnO(t, 0) = (x:) = i(- in,  t)(x:). 

From (7.2) we can obtain the mean value [7,8] 

(7.3) 

and fluctuations 

(7.4) 

of the process x,. The moments are 

(7.5) 
Comparing (7.2) and (7.5) we get 

(7.6) 

If the initial distribution p ( x ,  0) is given by (2.7) then we find the decorrelation property 

(x:xgm) = (x:)(xr). (7.7) 
Let us notice that the moments Cn0( t, 0) of x, can be obtained directly from the 
characteristic function C'(k,  t )  of z,. Indeed, 

C'(k, t )  = (exp(ikz,)). (7 .8 )  

C'(-in, t )  = (xy). (7.9) 

Using (2.9) and setting k = -in, we observe that 

By virtue of (6.3) and (7.9) we obtain the relaxation equations for the moments of x,, 

-- d(x')- -n[A+ d ( - i n ,  t)](x;). 
d t  (7.10) 
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One can check that the coefficients M,(x ,  t )  given by (5.7) can be expressed by 

M , ( x ,  t )  =- 
d(xl) d t  I (x , )=x 

(7.11) 

for n = 1 and 

(7.12) 

for n=2 ,3 ,  . . .  

8. The approximation methods revisited 

Our exact results allow us to revise some approximation procedures [6,11]. The most 
popular Fokker-Planck approximation can be obtained directly from equation (5.5) 
by an ordinary truncation of the Kramers-Moyal operator (5.6) and keeping only 
M , ( x ,  t )  and M2(x,  t ) .  It would be correct procedure if one could show that all K , ( t )  
or rather K, ( t ) /  ( n  - 1) ! ( n  = 3,4, . . .) tend to zero in some limiting cases. There are 
two parameters y and a which characterise the noise y r .  We can define the intensity 
E and correlation time r of the noise by 

E = y/a2 r = 1/a .  (8.1) 
It is argued that the Fokker-Planck approximation is correct if three limits, the long-time 
limit, t >> r, the limits of small intensity and small correlation time of the noise, are 
carried out. 

Because of (5.8) we should first consider the functions &-in, t )  ( n  = 1,2,3, .  . .). 
Let C > 0. Then in the long-time limit &-in, t )  do not depend on time and have the 
form 

&(-in) = -B*P,(&)+ C B ~ P ; ( E ) +  c ~ R , ( & )  (8.2) 
where 

One can check that 
lim &(-in) = - B2/4C. 
n-m 

In the long-time limit the function K , ( t )  (5.8) can be presented in the form 

K ,  = &-i) 
n - l  

K ,  = & ( - i n ) -  1 ( T’)Kn-l n =2 ,3 , .  . . 
I =  1 

(8.4) 

(8.5) 

Let E be sufficiently small. From (8.2)-(8.6) it is seen that a systematic power series 
expansion of K ,  as a function of E is impossible for sufficiently large n. But in (5.6) 
we need rather K n / (  n - l ) ! .  One can show that 

l imK,/(n- l ) !=O lim Kn/( n - l)! = 0. 
F - 0  n - c c  

(8.7) 
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In these circumstances we can expand P, ( E )  and R,( E )  for small E and not too large 
n = 1,2,  . . . , N (4GN << 1) and neglect all K , / (  n - 1) ! for n = N + 1 ,  N + 2, . . . . Then, 
to order E ’ ,  the generator (5.6) becomes 

a 
ax 

2 ‘ = ( A -  B * E +  CLIE - C * C X E * + ~ C B ~ E ~ ) - X  

(8.8) 
a’ a’ 

ax ax3 
+ (B2& + C2a&’ - 12CB2~’)  7 X * - ~ ~ C B ~ & * - X ~  

and K4 = O( E ~ ) ,  K 5  = O( E ~ ) ,  and so on. 

terms of order E. If a is large (small correlation time T ) ,  a - I /& ,  then 
The usual Fokker-Planck generator 2fFP can be obtained from (8.8) by keeping the 

a* a 
ax ax2 (8.9) 

We should compare our equations (8.8) and (8.9) with those obtained in [6,11]. Our 
E (8.1) corresponds to D in 161 and r in [ l l ] .  Using equations (3.13)-(3.16) in [6] 
we obtain the same equation as (8.9). In [ l l ] ,  WBdkiewicz derived the generator 2 
up to order (cf his equation ( 4 . 1 4 ~ ) ) .  This corresponds to our equation (8.8). One 
can check that his equation ( 4 . 1 4 ~ )  leads to a quite different generator than (8.8). His 
equation (4.13) is incorrect. It can be easily seen assuming that the parameter C in 
(2.1) is equal to zero. Then from (8.2) we get 

6 ( - i n )  = - B*En (8.10) 

2’Fp=(A+Ca& - B ’ E - ~ ~ ~ & ~ ) - X + ( B ’ E + C ~ I Y E ~ ) - X * .  

and by virtue of (5.8) we have 

( 8 . 1 1 )  

It is seen that K ,  = 0 for n = 3,4 ,5 , .  . . . For the model (2.1) with the linear noise y ,  
we obtain the exact Fokker-Planck generator. From equation (4.13) in [ 113 one obtains 
terms proportional to a3/ax3 and a4/ax4 which are different from zero. 

Finally, let us consider the following equation: 

X = - *( A + YC / LY )X - ( BY + CY* - YC / a )x. (8.12) 

If p = 1 then (8.12) reduces to (2.1). Stratonovich [19] proved that non-Markovian 
processes described by equations of type (8.12) may be approximated by diffusion 
Markovian processes in the limit /I + 0. More precisely, for fixed t’= p2t, let x, = 
x (  r ’ /p * )  = .?&( t ’ ) .  Then 

lim i ? + ( r ’ )  = Z 0 ( t ’ )  (8.13) 

where i?o is a diffusion Markovian process. Using theorem 1 . 1  of [19], one can obtain 
the generator of go. It is interesting that this generator for the process fo obtained 
from (8.12) has exactly the form (8.9). 

Ir -0 

9. Summary 

The model (2.1) we have considered represents the simplest exactly solvable stochastic 
model with non-linear noise. It describes many relaxation phenomena and generates 
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the non-Markovian process x,. We have presented the elimination procedure of the 
additional degree of freedom y from the two-dimensional stochastic process (x,, y , ) .  
We have derived fundamental formulae which characterise the process x,. All these 
formulae can be derived by using other methods but we think that the method presented 
is non-standard, more elegant and interesting. 

It should be pointed out that the results obtained are valid for any assumed values 
of the parameters of the model. Therefore, we have no problem of the domain of 
validity of results as in approximative theories (small or large values of some parameters, 
the adiabatic elimination scheme, the decoupling theory and so on, cf [20]). 
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Appendix 

We want to present the exponential operator on the left-hand side of equation (5.4) 
in the anti-normal order 

Differentiation with respect to the parameter z of both sides of (Al )  and using the 
commutation relation 

a"-' [s, x] = n -  
ax"-' 

leads to the equation for the coefficients Pn(z) ,  

where n = 0, 1,2, . . . , and P-,(z) = 0. The solution of this equation has the form 

which leads to the identity (5.4). 
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